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A B S T R A C T   

Surface downward shortwave radiation (DSR) is a fundamental variable in determining the Earth's radiation balance and is essential in many applications. 
Considerable efforts have been devoted to algorithm development, product generation, and validation. However, few studies have focused on comparing retrieval 
approaches, examining their strengths and weaknesses, and identifying the most suitable scenarios for each approach. In this study, we implemented and evaluated 
five representative DSR retrieval algorithms, including the forward parameterization approach, two physical inversion methods (look-up table (LUT) and optimi
zation), and two statistical inversion methods (direct estimation and neural networks). We then proposed an algorithm-integration framework that combined the 
results of these DSR retrieval methods to further improve DSR estimation accuracy and consistency. To validate the DSR retrievals, we used in-situ data collected at 
25 stations of the Baseline Surface Radiation Network (BSRN) over one year. Validation revealed that forward parameterization consistently performed best, with an 
overall root mean square error (RMSE) of 91.7 W/m2 or a relative RMSE of 16.9%, although it generated the fewest valid retrievals. For an identical data set, the LUT 
approach generated results comparable to those of parameterization. The neural network-based algorithm-integration approach reduced the RMSE by 11.0 W/m2 or 
the relative RMSE by 2.0%, compared to the best individual retrieval algorithm. Our analysis demonstrates that algorithm integration is a promising way to obtain 
DSR data that are superior to estimates from any individual retrieval algorithm.   

1. Introduction 

Downward shortwave radiation (DSR) reaching the Earth's land 
surface is the energy available for terrestrial ecosystem productivity and 
clean energy production. It controls the exchange of matter and energy 
at the atmospheric boundary layer, thus governing the cycling of water, 
carbon, and other elements of great significance to climatic and 
ecological systems and human society (Liang et al., 2019). Accurate 
information on the temporal and spatial variability of DSR is essential 
for studying the Earth's radiation budget (Berbery et al., 1999), hydro
logical cycling (Huang et al., 2016b), ecosystem productivity (Nemani 
et al., 2003), agricultural management (de Wit et al., 2005), renewable 
energy planning (Mellit and Kalogirou, 2008), and many other appli
cations. Remote sensing is currently the only feasible technology for 
regularly mapping global DSR. 

Early attempts to estimate DSR from satellite data were accompanied 
by the launch of the first generation of Earth observation satellites (e.g., 
Fritz et al., 1964). Since then, more and more advanced algorithms, 
based on an accurate modeling of the statistical relationship between 
satellite data and DSR (e.g., Peng et al., 2020) or on a sophisticated 
understanding of the physics of atmospheric radiative transfer (e.g., Letu 
et al., 2020), have been developed and used to generate satellite DSR 

products. A comprehensive summary of DSR retrieval algorithms can be 
found in a recent review paper (Huang et al., 2019). The various 
methods differ in their theoretical basis and conceptual framework, and 
their performance varies depending on atmospheric and surface condi
tions. Each method has its own strengths and weaknesses, and is 
applicable in specific scenarios. Comparing different retrieval algo
rithms is essential for algorithm selection as well as for algorithm inte
gration to leverage the strengths of multiple retrieval algorithms. 

As an indirect measuring approach, validation is essential in satellite 
DSR retrieval algorithm development and product generation to ensure 
product accuracy and stability for data users and to provide diagnostic 
information for product refinement and improvement. Validation is 
usually conducted during algorithm development (Wang and Pinker, 
2009). The stand-alone assessment of multiple products by data de
velopers or independent researchers is not uncommon (Zhang et al., 
2015). However, most validation and comparative studies have several 
issues in common. 1) Validation results across studies are typically not 
consistent or comparable because of differences in the selection of 
validation data sets (i.e., time and location, and quality of field mea
surements) and the use of validation methodology (i.e., treatment of 
data quality flags, and choice of spatial and temporal aggregation). 2) 
Many validation studies have been conducted by algorithm developers. 

* Corresponding author at: Department of Geographical Sciences, University of Maryland, 1127 LeFrak Hall, College Park, MD 20742, USA. 
E-mail address: ddwang@umd.edu (D. Wang).  

Contents lists available at ScienceDirect 

Remote Sensing of Environment 

journal homepage: www.elsevier.com/locate/rse 

https://doi.org/10.1016/j.rse.2021.112639 
Received 4 February 2021; Received in revised form 27 June 2021; Accepted 4 August 2021   

mailto:ddwang@umd.edu
www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2021.112639
https://doi.org/10.1016/j.rse.2021.112639
https://doi.org/10.1016/j.rse.2021.112639
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2021.112639&domain=pdf


Remote Sensing of Environment 264 (2021) 112639

2

The limitations and weaknesses of the algorithms might not be fully 
revealed without the different perspectives of independent in
vestigators. 3) Many efforts have been made to validate individual al
gorithms or products. The few comparative studies have focused mainly 
on data products rather than retrieval algorithms. While the assessment 
of data products is one way of indirectly evaluating retrieval algorithms, 
variation in input data quality and differences in algorithm imple
mentation and data processing mean that the accuracy of the final data 
products does not always reflect the reliability of the retrieval algo
rithms used. 

It is essential to fully understand the strengths and weaknesses of 
DSR retrieval algorithms, so that appropriate algorithms can be selected 
according to specific requirements and scenarios. More importantly, it is 
ideal to take advantage of various retrieval approaches by integrating 
multiple DSR estimation algorithms. The overarching goal of this study 
is to generate improved DSR estimates by synergizing existing retrieval 
approaches. The study consists of two major components. First, we 
implement and evaluate five representative DSR retrieval algorithms 
with consistent satellite data input, from the Moderate Resolution Im
aging Spectroradiometer (MODIS) and other ancillary datasets. Second, 
to overcome the limitations of estimating retrievals using a single 
approach and to take advantage of the strengths of various algorithms, 
we propose an algorithm-integration framework to combine the results 
of multiple retrieval algorithms and to generate consistent DSR esti
mates with improved accuracy. 

The five DSR retrieval algorithms evaluated are described in Section 
2. Section 3 summarizes the field measurements, satellite data and 
products, and ancillary datasets. The results of validation and compar
ison are presented and discussed in Section 4. Section 5 concludes with 
the major findings. 

2. Methodology 

2.1. DSR retrieval algorithms 

DSR is a function of atmospheric and surface attenuation and in
teractions of extraterrestrial solar irradiance, which varies with the 
Earth–Sun distance and solar elevation angle. Atmospheric radiative 
transfer models can forwardly compute DSR with high accuracy if the 
spatial distribution and optical characteristics of atmospheric constitu
ents, such as gas molecules, particulate matter, cloud droplets, and 
surface reflectivity, are known (Mayer and Kylling, 2005). However, the 
direct use of highly complex radiative transfer codes in producing global 
DSR products is typically infeasible due to the high computational cost 
and the need for a large number of input parameters (Huang et al., 
2019). 

Radiative transfer computation can be simplified or approximated 
for deriving DSR from the reduced input of atmospheric and surface 
parameters (Huang et al., 2018; Xie et al., 2016). This approach con
stitutes a ‘forward’ algorithm, in the sense that it uses the forward 
modeling of atmospheric radiative transfer, although satellite observa
tions may still need to be inverted for use as input parameters. Here, we 
evaluated one forward approach, the parameterization method. 

The other category of DSR retrieval algorithms involves ‘inverse’ 
approaches, which estimate DSR from the top-of-atmosphere (TOA) data 
directly observed by satellite sensors (Pinker, 1995). Some inverse 
methods are based on atmospheric radiative transfer theory and produce 
DSR values via the inversion of physical models. Other inverse ap
proaches are more statistical in nature, utilizing the empirical rela
tionship between satellite data and DSR. Here, we evaluated two 
physics-based methods (look-up table (LUT) and optimization) and 
two statistical approaches (direct estimation and neural network). 

2.1.1. Parameterization 
Parameterization is the only forward approach evaluated in this 

study. The complex radiation transfer process within the atmosphere 

can be approximated with acceptable accuracy via a series of simple 
empirically parameterized formulae. This lays out the basic foundation 
of the parameterization approach, which parameterizes the radiative 
transfer model using simplified mathematical equations with a reduced 
complexity of input variables (Van Laake and Sanchez-Azofeifa, 2004). 
Compared to the explicit calculation of the atmospheric radiative 
transfer model, parameterization can significantly improve computa
tional efficiency as well as reduce the number and complexity of input 
parameters (Qin et al., 2015). The specific schemes of parameterization 
differ in their assumptions and simplifications of the radiative transfer 
process as well as the choice of mathematical equations. Besides, the 
performance of the parameterization methods is depend on the selection 
and quality of input variables. Some study mainly relied on MODIS data 
products (Tang et al., 2017a; Tang et al., 2017b), and some combined 
multiple sources of datasets, such as reanalysis data and multisource 
satellite products (Tang et al., 2019a; Tang et al., 2016). 

Here, we used the improved parameterization algorithm developed 
by Huang et al. (2018). This all-sky broadband parameterization scheme 
explicitly accounts for the interactions between the atmosphere and the 
surface. Compared to earlier approaches, this method better parame
terizes the multiple scattering process within clouds (Huang et al., 
2018). Its parameters are derived from simulated data for a range of 
solar angles, atmospheric profiles, and aerosol and cloud types. This 
parameterization approach uses several MODIS products for atmo
spheric and surface parameters as input; these parameters include 
aerosol optical depth (AOD), cloud effective radius, cloud water path, 
and surface broadband albedo. A full list of input variables is shown in 
Table 1. 

2.1.2. LUT 
The LUT approach is a physics-based approach that inverts the DSR 

from satellite observations of the TOA reflectance. The LUT-based 
approach assessed here is the narrowband approach for estimating the 
surface broadband shortwave flux (Liang et al., 2006). The LUT 
approach was named after the two look-up tables used to derive TOA 
reflectance (reflectance LUT) and surface DSR (flux LUT). The use of the 
LUT files, which store the pre-calculated results of atmospheric radiative 
transfer simulations, avoids the need for online execution of radiative 
transfer models for each individual retrieval. In addition to the 
narrowband LUT approach, the broadband DSR retrieval approach uses 
the TOA broadband albedo to infer atmospheric information and, thus, 
retrieve DSR (Pinker, 1995). 

The narrowband LUT approach was originally developed for esti
mating the photosynthetically active radiation (PAR), the visible 
component of DSR, from MODIS data (Liang et al., 2006). Following a 
series of improvements and refinements, this approach is currently used 
to generate the global MODIS land surface DSR and PAR products 
(MCD18) (Wang et al., 2020). 

The LUT approach assessed here involves two major steps. The at
mospheric parameters are first obtained by matching the TOA reflec
tance calculated from the reflectance LUT with that observed by the 
satellite. In the initial version of the narrowband algorithm, surface 
reflectance data was retrieved from MODIS time series data using a 
minimal blue band reflectance approach (Liang et al., 2006). As an 
alternative, the surface reflectance data can be obtained directly from 
the existing product (Wang et al., 2020). Using the atmospheric pa
rameters estimated in the first step and the surface reflectance infor
mation, DSR is generated in the second step by searching the flux LUT. 

2.1.3. Optimization 
The optimization algorithm is another physics-based inversion 

approach (Zhang et al., 2018). This method optimizes both the atmo
spheric and surface parameters in atmospheric radiative transfer 
modeling by minimizing a cost function that accounts for the difference 
between the observed and predicted TOA reflectance. DSR is then 
calculated from the optimized atmospheric and surface parameters. In 
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addition to the MODIS data, the optimization approach has been 
extended to generate DSR from the Visible Infrared Imaging Radiometer 
Suite (VIIRS) (Zhang et al., 2020b) and Advanced Baseline Imager (ABI) 
data (Zhang et al., 2021). 

The optimization approach can be viewed as an extension of the LUT 
approach, in the sense that it also uses the two LUT files to derive the 
spectral TOA reflectance and surface DSR. The major difference is that 
the optimization approach can simultaneously retrieve atmospheric and 
surface parameters from TOA observations and take advantage of mul
tispectral information, while the LUT method uses data from a single 
band. 

2.1.4. Direct estimation 
The direct estimation approach is one of the two statistical inversion 

methods assessed here. It consists of two major steps (Zhang et al., 
2019). In the first step, which gives the method its name, the surface 
shortwave net radiation is directly estimated from the MODIS TOA 
spectral reflectance based on the statistical relationship between the two 
variables (Wang et al., 2015a; Wang et al., 2015b). DSR is then calcu
lated from the surface shortwave net radiation and surface albedo. 

The first step in estimating the surface shortwave net radiation is the 

core component of the direct estimation approach. Surface shortwave 
net radiation is the difference between the surface incident shortwave 
radiation and the shortwave radiation reflected by the surface, and is 
equal to the shortwave radiation absorbed at the surface. The shortwave 
radiation absorbed at the surface is highly correlated with that absorbed 
at the TOA (Kim and Liang, 2010; Pinker et al., 1985). Based on this 
relationship, the surface shortwave net radiation can be estimated from 
the TOA broadband reflectance (Cess and Vulis, 1989). Wang and Liang 
(2014b) demonstrated that the surface shortwave net radiation can also 
be estimated from the TOA spectral reflectance. This constitutes the 
basis for estimating DSR from multispectral MODIS data. This approach 
is currently used as the operational retrieval algorithm for generating 
the DSR product (Zhang et al., 2019) of the Global LAnd Surface Satellite 
(GLASS) products suite (Liang et al., 2021). 

2.1.5. Neural network 
Machine learning has recently been used to estimate DSR because of 

its flexibility and efficiency in modeling the nonlinearity between DSR 
and satellite data. Frequently used machine-learning methods include 
the gradient boosting regression tree (GBRT) (Wei et al., 2019), random 
forest (Hou et al., 2020), and neural network (Ryu et al., 2018; Takenaka 
et al., 2011) methods. The reliability of machine learning for estimating 
DSR has been demonstrated, particularly using GBRT and neural 
network methods (Brown et al., 2020; Hou et al., 2020; Wei et al., 2019). 
The theory of estimating DSR using neural network methods and the 
process of constructing the networks were comprehensively docu
mented by Takenaka et al. (2011). The deep learning approach, which is 
able to use sophisticated architecture to approximate high complexity of 
the nonlinear patterns, recently found its applications in DSR estimation 
(Ma et al., 2020). 

Here, we evaluated the neural network-based retrieval approach 
developed by Brown et al. (2020) for estimating DSR from MODIS TOA 
data. The model inputs include the TOA spectral reflectance of the seven 
MODIS land channels (Bands 1–7) and their viewing geometry data as 
well as cloud coverage information. The independent variables were 
normalized before training. We followed the same architecture devel
oped by Brown et al. (2020), which includes one input layer with 11 
neurons, one hidden layer with 14 neurons, and one output layer with 
one neuron. The original method employed sigmoid as the activation 
function. To expedite convergence and improve model performance, we 
changed it to the rectified linear unit (ReLU) activation function. 

2.2. Algorithm integration 

The five DSR retrieval algorithms assessed in this study have 
different theoretical foundations and conceptual frameworks. Each has 
specific strengths and limitations. It is useful to develop an algorithm- 
integration strategy that combines DSR estimates from multiple 
retrieval approaches to improve the accuracy and consistency of the 
final DSR results. 

A range of data integration algorithms have been developed (Wang, 
2012). Machine learning-based approaches have recently gained popu
larity in data integration; machine learning uses nonlinear models to 
establish the relationship between the integrated results, original esti
mates, and ancillary information (Zhang et al., 2020a). Here, we used 
the neural network algorithm to combine the results of the five DSR 
retrieval approaches. In addition to the DSR estimates, information on 
the view geometry and environmental conditions of the retrievals was 
used as the neural network input. The ancillary variables included solar 
zenith angle, view zenith angle, relative azimuth angle, cloud coverage, 
total column water vapor, and surface broadband albedo. A multilayer 
perceptron network with two hidden layers of 25 and five neurons, 
respectively, was used. ReLU was chosen as the activation function. 

Additionally, we used a linear regression approach for algorithm 
integration and compared it with the machine-learning approach. Given 
its simplicity and efficiency, the linear regression approach has been 

Table 1 
List of input variables required by the five downward shortwave radiation (DSR) 
retrieval algorithms.  

Algorithm Input 
variable 

Sources Temporal 
resolution 

Spatial 
resolution 

Parameterization Surface 
pressure 

MERRA2 hourly 0.625*0.5◦

AOD MODATML2 MODIS 
swath 

10 km  

MERRA2 3-hourly 0.625◦*0.5◦

Precipitable 
water 

MOD07_L2 MODIS 
swath 

5 km  

MERRA2 hourly 0.625*0.5◦

Ozone MERRA2 hourly 0.625*0.5◦

Surface 
albedo 

MCD43A3 daily 500 m 

Cloud phase MODATML2 MODIS 
swath 

5 km 

Cloud water 
path 

MODATML2 MODIS 
swath 

5 km 

Cloud 
effective 
radius 

MODATML2 MODIS 
swath 

5 km 

LUT TOA 
reflectance 

MOD021KM MODIS 
swath 

1 km 

Surface 
reflectance 

MCD43A3 daily 500 m 

Precipitable 
water 

MOD07_L2 MODIS 
swath 

5 km  

MERRA2 hourly 0.625*0.5◦

Elevation GTOPO30 static 30’ 
Optimization TOA 

reflectance 
MOD021KM MODIS 

swath 
1 km 

Surface 
reflectance 

MCD43A3 daily 500 m 

Cloud mask MOD35_L2 MODIS 
swath 

1 km 

Precipitable 
water 

MOD07_L2 MODIS 
swath 

5 km  

MERRA2 hourly 0.625*0.5◦

Elevation GTOPO30 static 30’ 
Direct estimation TOA 

reflectance 
MOD021KM MODIS 

swath 
1 km 

Cloud mask MOD35_L2 MODIS 
swath 

1 km 

Surface 
albedo 

MCD43A3 daily 500 m 

Neural network TOA radiance MOD021KM MODIS 
swath 

1 km 

Cloud mask MOD35_L2 MODIS 
swath 

1 km  
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used to integrate many remote sensing data products (Shi and Liang, 
2013; Wang and Liang, 2014a). The linear approach calculates the in
tegrated result as the optimal linear combination of the individual re
trievals. In some circumstances, the best linear predictor is also the best 
predictor (Gandin, 1965). In the linear approach, the integrated DSR 
was modeled as the weighted average of the DSR estimates from the five 
retrieval algorithms. 

The major procedures for DSR retrieval and integration are sum
marized in Fig. 1. DSR is first estimated by the five inverse or forward 
retrieval algorithms from MODIS TOA data, atmospheric and surface 
products, as well as other ancillary information. The intermediate DSR 
estimates are then used as the input of the algorithm integration process. 
The integration methods, which are based on either linear regression or 
machine learning and trained with field measurements, generate 
improved estimates of DSR. 

3. Data sets 

Three groups of data—DSR field measurements, MODIS data and 
products, and ancillary data for algorithm development and uncertainty 
analysis—were used in this study. 

3.1. Field measurement 

DSR is measured by many weather stations, flux towers, or stations 
designated for radiation studies. The quality and consistency of the 
measurements varies and depends on many factors. The Baseline Surface 
Radiation Network (BSRN), an international measurement network, was 
established by the World Climate Research Programme (WCRP) in the 
late 1980s to provide reliable ground truth data for validating satellite- 
retrieved and model-simulated surface radiative fluxes, and to facilitate 
climatic studies on surface radiation variability (Driemel et al., 2018; 
Ohmura et al., 1998). At BSRN stations, a cavity radiometer or ther
mopile pyrheliometer is used for direct DSR measurement. A pyran
ometer is used to measure the total DSR, and a shaded pyranometer to 
measure the diffuse DSR. In addition to surface irradiance, BSRN sites 
typically collect surface meteorological variables and atmospheric pro
file information. 

The BSRN stations cover a variety of latitudes, altitude, land cover, 
and climate zones. BSRN maintains a strict standard and delivers a 
consistently high-quality dataset for the entire globe. The BSRN accu
racy requirement for total DSR is 5 W/m2, and that for direct DSR is 2 W/ 
m2. BSRN is an ideal data source for comparing the five retrieval algo
rithms over various scenarios. DSR measurements for 2013, from 25 

BSRN stations, were obtained (Table 2). DSR is measured at BSRN sta
tions at very high frequencies (~1 Hz), and the averaged data for each 
minute are archived. We downloaded the 1-min data from these stations. 
The field measurements within a 30-min window of the MODIS overpass 
time were aggregated for comparison with the MODIS retrievals to 
mitigate the influence of spatial resolution mismatches and 3D cloud 
effects (Huang et al., 2016a). 

Among the five retrieval algorithms, the parameters of the two sta
tistical approaches needed to be tuned. The direct estimation approach 
was trained using simulated data, while the neural network approach 
required field measurements for training. To maximize the amount of in- 
situ data that can be used for validation and intercomparison, we used 
the DSR measurements from four Surface Radiation Budget (SURFRAD) 
stations (Augustine et al., 2005), which are not part of the 25 BSRN 
stations, to train the neural network (Table 3). At SURFRAD, Normal 
Incidence Pryheliometers are used to measure the direct DSR, and 
Eppley 8–48 pyranometers are used for diffuse DSR measurement. One 

Fig. 1. Data flow of algorithm integration for improving downward shortwave radiation (DSR) estimation.  

Table 2 
Information of the Baseline Surface Radiation Network (BSRN) stations used for 
algorithm validation.  

Site No. Site name Latitude Longitude Elevation (m) Continent 

1 GOB − 23.56 15.04 407 Africa 
2 TAM 22.79 5.53 1385 
3 FUA 33.58 130.38 3 Asia 
4 ISH 24.34 124.16 6 
5 XIA 39.75 116.96 32 
6 ASP − 23.80 133.89 547 Oceania 
7 DAR − 12.43 130.89 30 
8 DWN − 12.42 130.89 32 
9 LAU − 45.05 169.69 350 
10 CAB 51.97 4.93 0 Europe 
11 CAM 50.22 − 5.32 88 
12 CAR 44.08 5.06 100 
13 CNR 42.82 − 1.60 471 
14 LER 60.14 − 1.18 80 
15 LIN 52.21 14.12 125 
16 PAL 48.71 2.21 156 
17 BIL 36.61 − 97.52 317 North America 
18 BON 40.07 − 88.37 213 
19 DRA 36.63 − 116.02 1007 
20 E13 36.61 − 97.49 318 
21 GCR 34.25 − 89.87 98 
22 PSU 40.72 − 77.93 376 
23 BRB − 15.60 − 47.71 1023 South America 
24 PTR − 9.07 − 40.32 387 
25 SMS − 29.44 − 53.82 489  
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year data of 1-min SURFRAD measurements were downloaded. 

3.2. MODIS data 

We used several MODIS data products as the main satellite inputs for 
the DSR retrieval algorithms. Each MODIS data product has a unique 
Earth Science Data Type (ESTD) name, which we used here to identify 
the MODIS products. The MODIS sensors are onboard two satellites, 
named Terra and Aqua. ESDT names from the two sensors use a different 
prefix. For simplicity, we list only the ESDT names of the MODIS/Terra 
products, although data from both sensors were used in the study. 

MOD021KM and MOD03 are MODIS L1B products. MOD021KM is 
TOA spectral reflectance data at a 1-km resolution. MOD03 is the cor
responding geolocation and view geometry information. The number of 
MODIS observations per day varies with latitude. By combining Terra 
and Aqua, we achieved more than two daytime observations per day for 
most parts of the world. The L1B datasets contain MODIS spectral 
radiance data after radiometric calibration and geometric correction 
(Xiong et al., 2007). The L1B observational data were used as the input 
for all MODIS upstream high-level products. Among the five DSR 
retrieval algorithms, the four inversion approaches required TOA spec
tral reflectance data and their corresponding view geometry. 

MOD35_L2, the MODIS cloud mask product, uses a variety of tests 
based on the MODIS solar-reflective and thermal bands to produce the 
cloud mask at a 1-km resolution (Ackerman et al., 1998). Optimization 
and direct estimation approaches select different retrieval paths ac
cording to whether clouds are present or not. This product was also used 
as input for the neural network approach. 

MCD43A3, the MODIS albedo product, is the only gridded MODIS 
product we used (Schaaf et al., 2002). In its early versions, MODIS al
bedo values were updated every eight days. The latest Collection 6 data 
use a temporally weighted approach that emphasizes the contribution of 
the current day's observations to estimate the daily albedo. The MODIS 
daily albedo product was used for four of the retrieval algorithms. 

MOD07_L2 is the MODIS atmosphere profile product, containing 
several atmospheric parameters (King et al., 2003), of which precipita
ble water was used as input for three of the retrieval algorithms. 

MODATML2, the MODIS joint atmosphere product, combines several 
high-level products generated by the MODIS atmospheric team; these 
include aerosol (Levy et al., 2013) and cloud optical properties (Platnick 
et al., 2017). This combined product serves as the basis of several key 
inputs, including AOD, cloud effective radius, cloud water path, and 
cloud phase, needed by the parameterization approach. 

3.3. Other data sets 

Two of the DSR retrieval algorithms evaluated here require surface 
elevation data, for LUT selection and interpolation. These data were 
obtained from the GTOPO30 product. GTOPO30 is a global digital 
elevation model (DEM) dataset with a spatial resolution of 30 arc- 
seconds, developed by the United States Geological Survey (USGS). 
This dataset is also used in the production of the MODIS DSR product 
(MCD18A1). 

A global reanalysis dataset, Modern-Era Retrospective Analysis for 
Research and Application Version 2 (MERRA2), was used. MERRA2 was 
developed by the NASA Global Modeling and Assimilation Office (Molod 

et al., 2015). Although available at a coarse spatial resolution, MERRA2 
data are spatially complete. MERRA2 surface pressure and ozone con
centrations were used for the parameterization approach. Total column 
water vapor and AOD were obtained from MERRA2 when MODIS 
products for those variables were not available. 

Due to the similarity between the optical characteristics of snow and 
clouds, it is a challenge to estimate DSR over snow-covered surfaces. To 
assess the performance of the five algorithms over snow, snow cover 
data were used. Although MODIS has its own snow cover product, it is 
available only for clear-sky pixels and is limited by the ability of optical 
sensors to discriminate between snow and clouds. Here, we used all-sky 
Interactive Multisensor Snow and Ice Mapping System (IMS) snow map 
data; in this product, satellite data from various sources, including op
tical, passive microwave, and RADAR sensors onboard polar and geo
stationary satellites, are combined to generate IMS binary snow cover 
data at a 4-km resolution (Helfrich et al., 2007). However, IMS snow 
data have no coverage in the Southern Hemisphere. Another all-sky 
snow cover product, the Near-Real-Time SSM/I-SSMIS EASE-Grid 
Daily Global Ice Concentration and Snow Extent (NISE) snow map, 
was used when IMS data were not available. Compared to IMS, the NISE 
snow map has a coarser spatial resolution (25 km). 

4. Results and discussion 

4.1. DSR retrieval methods 

4.1.1. Overall performance 
We compared the DSR retrievals from the five algorithms using all 

available MODIS data with the field measurements of DSR. The direct 
estimation model was established using the simulated data, and the 
neural network was trained with the data from four SURFRAD stations, 
which are not part of the 25 BSRN sites. Thus, the ground truth data from 
all of the 25 BSRN sites were used to validate the five algorithms (Fig. 2). 
In terms of accuracy, the parameterization method produced the most 
accurate DSR, with an RMSE of 91.7 W/m2 and a bias of 6.7 W/m2; the 
LUT approach was the second most accurate, by ~10 W/m2 higher in 
RMSE; the optimization follows, by 6 W/m2 higher in RMSE than that of 
the LUT approach. The two statistical methods had the worst perfor
mance. Direct estimation produced a small number of negative DSR 
values (1.6%), due to the unbounded nature of linear regressions; 
excluding negative values improved the DSR estimates slightly, reducing 
their RMSE and bias by 2 W/m2. The neural network approach produced 
only positive DSR values because it applies the ReLU activation function. 
In contrast to the two statistical methods, the remaining three ap
proaches are all physically constrained because they are based either on 
offline radiative transfer models or the parameterization of radiative 
transfer models. 

It should be noted that the five approaches generated different 
numbers of valid retrievals; this is because they require different sets of 
input variables. The availability of combinations of input data varied 
across methods. As expected, the optimization and neural network ap
proaches had most valid DSR retrievals because they require only TOA 
spectral reflectance and cloud mask data. The LUT and direct estimation 
approaches produced 2% fewer retrievals because they additionally 
require spectral or broadband surface albedo data. The parameterization 
approach had the fewest valid results, i.e., it generated 22% fewer re
trievals than the optimization or neural network approaches, even when 
invalid MODIS AOD data were replaced with MERRA2 reanalysis data. 
When only MODIS AOD data were used, the parameterization approach 
had 44% fewer valid retrievals. This is not surprising because the 
parameterization approach requires the most input parameters. The 
satellite products for several input variables, such as aerosol and cloud 
parameters, had many missing values. 

The results were also examined by station (Table 4) and sensor 
(Table 5). The relative performance of the five retrieval approaches was 
consistent over all stations. Parameterization produced the smallest 

Table 3 
List of the four Surface Radiation Budget (SURFRAD) stations used for training 
the neural network.  

Site No. Site name Latitude Longitude Elevation (m) 

1 FPK 48.31 − 105.10 634 
2 GWN 34.25 − 89.87 98 
3 SXF 43.73 − 96.62 473 
4 TBL 40.12 − 105.24 1689  
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errors, almost over all stations. The performance of the DSR retrieval 
approaches varied substantially across various stations. It is found that 
the accuracy of DSR estimates mainly changes with several factors such 
as view geometry, snow and cloud coverage. The impacts of these factors 
will be discussed in detail in the following sections. It is also noted that 
climate type plays an important role in determining the validation sta
tistics at the station level. Sites with dynamic weather tend to be asso
ciated with lower accuracy in estimating DSR. For example, GOB, where 
the frequency of cloudy-sky cases is less than 5%, sees the best perfor
mance with relative RMSE as low as 5.5%. On the other hand, LER with 
cloudy-sky cases around 80% has the highest relative RMSE of 31.8% 
among all the results from parameterization. This phenomena can be 
attributed to two factors. All the retrieval algorithms evaluated in the 

study produce higher accuracy for clear-sky cases. Besides, the dynamic 
changes of atmospheric conditions exaggerates the 3-dimensional effect 
of clouds (Jiang et al., 2020) and increases uncertainties in algorithm 
validation. 

The accuracy of the five approaches had a similar ranking across the 
two MODIS sensor (Table 5). Parameterization outperformed the other 
four approaches for both MODIS/Aqua and MODIS/Terra data. Inter
estingly, all the five retrieval approaches produced slightly better results 
for MODIS/Terra than for MODIS/Aqua. Further investigation is needed 
to attribute the difference to the radiometric performance of the two 
sensors or the diurnal variability in surface and atmospheric parameters. 

Fig. 2. Comparison of all available satellite down
ward shortwave radiation (DSR) data retrieved from 
the five algorithms with the Baseline Surface Radia
tion Network (BSRN) measurements. The red lines are 
1:1 lines. The colors in the scatter plots represent the 
point density, blue = low point density, red = high 
point density. rRMSE is the relative root mean square 
error (RMSE). (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   
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4.1.2. Validation results using identical datasets 
Pixels for which some of the input data required for the parameter

ization approach were unavailable could be challenging for the other 
DSR retrieval algorithms, even though they do not directly use those 
input data. To ensure fair comparison, we excluded these cases from the 
results of the other four approaches and generated plots using identical 
datasets for the validation step (Fig. 3). All four approaches produced 
better results after the observations with missing MODIS atmospheric 
products had been excluded, with reductions in RMSEs ranging from 3.9 
W/m2 for optimization to 5.7 W/m2 for direct estimation. The accuracy 
of the LUT approach, the second best-performing approach, improved by 
5.0 W/m2. When the same set of input data was used, the RMSE of the 
LUT approach was only 4.1 W/m2 greater than that of the parameteri
zation approach. 

We then examined the impact of the availability of MODIS AOD data 
on the retrieval results (Figs. 4 and 5). Similarly, the availability of valid 
MODIS AOD data affected the DSR results of all methods, even though 
only parameterization requires AOD as input. Parameterization had an 
overall RMSE of 71.5 W/m2 and a bias of 7.6 W/m2 for all clear-sky cases 
when MERRA2 AOD data were additionally used; when using only valid 
MODIS AOD input, the RMSE of the parameterization approach was by 
more than 20 W/m2 lower, at 47.3 W/m2, and the bias was reduced to 
− 1.6 W/m2. Using the same cases for which MODIS AOD data were 
available resulted in a slightly higher accuracy of the LUT approach as 
compared to the parameterization approach. 

These results clearly demonstrate that the performance of all DSR 
retrieval algorithms is strongly dependent on the observation condi
tions. All five methods tended to estimate DSR with higher accuracy 
under favorable atmospheric conditions, such as when MODIS aerosol 
parameters and cloud optical and microphysical data were available. 

4.1.3. Impacts of clouds 
To further evaluate the impacts of surface and atmospheric condi

tions on DSR retrievals, we analyzed the DSR results in terms of cloud 
presence and phase. We used the MODIS cloud phase product to divide 
the overall results into three categories: no clouds, water clouds, and ice 
clouds. The validation results of the five algorithms under the three 
different cloud conditions are summarized in Table 6. 

Similar to the situation achieved disregarding cloud cover, the 
parameterization approach outperformed the other four approaches 
under all three cloud conditions, except for one scenario: for clear-sky 
pixels, the LUT RMSE was marginally smaller than that of the parame
terization approach. All five approaches performed relatively well under 
clear-sky conditions. The RMSE ranged from 71.3 W/m2 (or relative 
RMSE of 9.3%) of the LUT approach to 91.8 W/m2 (12.1%) of the neural 
network approach. The presence of clouds significantly reduced the 
accuracy of the DSR estimates for all five algorithms. The lowest RMSE 
obtained for cloudy-sky cases was 105.7 W/m2 (for ice clouds), using the 
parameterization approach. This was 34.2 W/m2 greater than the RMSE 
achieved for clear-sky cases using the parameterization approach. 
However, the relative error was more than three times greater than that 
for clear-sky cases because DSR is lower when clouds are present. The 
estimation accuracy was similar for water and ice cloud pixels. Among 
the five algorithms, direct estimation produced the lowest accuracy for 
cloudy-sky cases, with RMSEs of 129.2 W/m2 (32.1%) and 120.5 W/m2 

(32.9%) for water cloud and ice cloud pixels, respectively. 
The challenges in estimating DSR under cloudy-sky conditions are 

associated with several factors. Clouds have various thermodynamic 
phases and complex microphysical characteristics, which lead to vari
ability in cloud optical properties (Letu et al., 2020). DSR retrieval 
methods have simplified assumptions on cloud vertical structure, which 
typically neglect the effects of multilayer clouds (Wang et al., 2016). In 
addition to inhomogeneous vertical profile, horizontal distribution of 
clouds shows substantial spatial heterogeneity too. It results in the 3- 
dimensional effect of clouds in validating satellite DSR retrievals with 
ground measurements of DSR (Huang et al., 2016a). Ta
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4.1.4. Impacts of snow 
Snow was a major factor affecting the performance of all DSR 

retrieval algorithms. All five approaches evaluated here showed a 
significantly poorer performance over snow-covered cases (Table 7). As 
before, the parameterization method produced the highest accuracy for 
snow-covered cases, with an RMSE of 81.4 W/m2 or a relative RMSE of 
22.6%. The direct estimation approach also produced accurate results 
for bright-surface cases, with an RMSE 12.4 W/m2 greater than that of 
the parameterization approach. As a result, the reduction in accuracy 
caused by snow was smaller for the parameterization and direct esti
mation approaches than for the other approaches. When the surface was 
covered by snow, the increase in the relative RMSE was 7–8% for the 
parameterization and direct estimation approaches, 14–15% for the 
optimization and LUT approaches, and 18% for the neural network 
approach. 

The cloud microphysical and optical products needed as input for the 
parameterization approach use different strategies and band 

combinations to handle the reduced contrast between clouds and snow 
in the visible channels (Platnick et al., 2017). Thus, the parameterization 
approach could achieve a high accuracy even when snow was present. 
Our evaluation reveals that the statistical models used in the direct 
estimation approach can handle snow cases relatively well by combining 
various types of multispectral information. The neural network 
approach produced the worst results over snow-covered cases. Further 
algorithm development, with additional training data over snow- 
covered pixels, is needed to improve the performance of the neural 
network approach. 

4.1.5. Angular dependency of retrieval errors 
The validation results were analyzed in terms of view geometry to 

examine the dependency of DSR retrieval accuracy on solar zenith an
gles, view zenith angles, and relative azimuth angles. For all five 
methods, the absolute RMSE values decreased with the solar zenith 
angle (Fig. 6). The relative RMSE increased substantially with the solar 

Table 5 
Summary of the validation results of the five DSR retrieval algorithms using MODIS/Aqua and MODIS/Terra data.  

Algorithm MODIS/Aqua MODIS/Terra 

R2 RMSE Bias rRMSE R2 RMSE Bias rRMSE 

Parameterization 0.90 95.3 3.4 17.3 0.92 89.0 9.0 16.6 
LUT 0.89 101.6 − 5.5 18.4 0.89 99.6 − 5.1 18.5 
Optimization 0.88 107.7 − 24.3 19.5 0.88 103.9 − 19.1 19.3 
Direct estimation 0.86 113.8 − 5.3 20.6 0.88 105.8 − 2.7 19.6 
Neural network 0.87 110.9 0.9 20.1 0.87 107.6 2.4 20.0  

Fig. 3. Comparison of the satellite downward shortwave radiation (DSR) retrieved from the look-up table (LUT), optimization, direct estimation, and neural network 
approaches with the identical set of Baseline Surface Radiation Network (BSRN) measurements as parameterization. 
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zenith angle, especially above 45◦, because DSR decreases with the solar 
zenith angle. These trends were valid for both clear-sky and cloudy-sky 
cases. These results reveal the challenges of obtaining relatively accurate 
DSR estimates when the solar zenith angle is large. There are several 
reasons for this difficulty. First, a larger solar zenith angle is indicative of 
cold seasons with a greater chance of a snow cover. Second, the length of 
the light-scattering path increases with the solar zenith angle. Third, a 
large solar zenith angle increases the uncertainty in modeling the at
mospheric heterogeneity under the parallel-plane assumption and the 
anisotropy of the surface reflectance. Fourth, the effect of the Earth's 
curvature increases with the solar zenith angle. 

The changes in the relative RMSE obtained using the view zenith 
angle were substantially smaller than those obtained using the solar 
zenith angle (Fig. 7). The clear-sky and cloudy-sky conditions showed 
distinct patterns of angular dependency. The relative RMSE changed 
little (within 2%) in the clear-sky results, and the patterns were not 
monotonic. The relative errors for estimating the cloudy-sky DSR did not 
change as much with the view zenith angle as with the solar zenith 
angle; this increase was particularly pronounced using the parametri
zation approach. 

The dependency of the errors on the relative azimuth angle also 
differed between clear-sky and cloudy-sky conditions (Fig. 8). For clear- 
sky cases, hardly any of the trends were monotonic. For cloudy-sky 
cases, observations from the principal plane and the perpendicular 

plane produced different levels of accuracy: data from the perpendicular 
plane resulted in less accurate DSR estimates, potentially due to un
certainties in modeling the anisotropy of cloud reflectivity for various 
cloud phases (Ehrlich et al., 2008). 

4.2. Algorithm Integration results 

4.2.1. Overall results 
The two algorithm-integration approaches presented here—linear 

regression and machine learning—are both data-driven methods: the 
model parameters are trained using actual measurement data. Their 
performance should be evaluated using a dataset that is independent of 
the training data. To assess the impact of the amount of training data on 
the integration results, we used various portions (up to 60%) of the total 
dataset to train the two models and tested the results using the 
remaining data. The errors of both approaches initially declined with an 
increasing amount of training data (Fig. 9). Their accuracy then pla
teaued and changed little with a further increase in training data. It is 

Fig. 4. Validation of clear-sky downward shortwave radiation (DSR) estimated from the parameterization approach using a) MODIS aerosol optical depth (AOD) or 
MERRA2 AOD and b) only MODIS AOD. 

Fig. 5. Validation of clear-sky downward shortwave radiation (DSR) estimated 
from the look-up table (LUT) approach for the same set of pixels as in Fig. 4b 
(where MODIS aerosol optical depth (AOD) data are available). 

Table 6 
Summary of the validation results of the five algorithms for three cloud scenarios 
(cloud-free, water clouds, and ice clouds).  

Algorithm Cloud 
phase 

R2 RMSE (W/ 
m2) 

Bias (W/ 
m2) 

rRMSE 
(%) 

Parameterization Cloud- 
free 

0.881 71.5 7.6 9.5 

Water 
clouds 

0.764 109.5 − 15.0 32.1 

Ice clouds 0.830 105.7 35.9 32.9 
LUT Cloud- 

free 
0.880 71.3 2.2 9.4 

Water 
clouds 

0.746 117.1 − 17.0 34.4 

Ice clouds 0.790 112.8 − 16.5 35.1 
Optimization Cloud- 

free 
0.866 80.1 − 26.2 10.6 

Water 
clouds 

0.742 119.1 − 14.1 34.9 

Ice clouds 0.788 113.5 − 10.8 35.3 
Direct estimation Cloud- 

free 
0.871 76.0 − 11.4 10.1 

Water 
clouds 

0.718 129.2 − 19.7 37.9 

Ice clouds 0.777 120.5 21.3 37.5 
Neural network Cloud- 

free 
0.817 91.8 − 25.4 12.1 

Water 
clouds 

0.742 118.2 34.9 34.7 

Ice clouds 0.775 116.1 16.0 36.2  
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not surprising that the linear model plateaued faster than the machine- 
learning-based approach because the former has fewer free parameters 
and requires less data for training. The neural network-based approach 
generally produced more accurate integration results (by ~2 W/m2) 

than the linear regression-based integration approach. This is because 
the machine-learning approach can model more complex relationships 
between the retrieved DSR and the observed values. The use of ancillary 

Table 7 
Summary of the validation results of the five algorithms for snow-covered and snow-free cases.  

Algorithm Snow-covered Snow-free 

R2 RMSE (W/m2) Bias 
(W/m2) 

rRMSE (%) R2 RMSE (W/m2) Bias 
(W/m2) 

rRMSE (%) 

Parameterization 0.900 81.4 15.1 22.6 0.914 90.5 5.1 16.6 
LUT 0.811 116.3 − 18.1 32.3 0.911 93.0 − 6.9 17.1 
Optimization 0.813 114.9 − 40.8 31.9 0.904 97.7 − 20.2 17.9 
Direct estimation 0.874 93.8 − 31.0 26.0 0.891 102.8 − 7.2 18.9 
Neural network 0.708 134.0 − 12.3 37.2 0.892 103.2 2.2 18.9  

Fig. 6. Changes of estimation errors for downward shortwave radiation (DSR) 
with the solar zenith angle. Absolute errors are shown in solid lines and relative 
errors are shown in dashed lines. 

Fig. 7. Changes in estimation errors for downward shortwave radiation (DSR) 
with the view zenith angle. 

Fig. 8. Changes in estimation errors for downward shortwave radiation (DSR) 
with the relative azimuth angle. 

Fig. 9. Changes in the root mean square error (RMSE) of two algorithm- 
integration methods with the ratio of training data to total data. 
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information as additional input to the machine-learning-based approach 
enables to determine the specific combination of DSR values most suited 
to specific scenarios. 

To quantitatively evaluate the benefit of integrating multiple DSR 
estimates, we fixed the amount of training data to 60% of the total data 
and compared the integrated results with the original DSR values 
retrieved using the individual approaches. The DSR estimates from the 
best-performing retrieval algorithm (parameterization) and the results 
obtained using the two integration methods (Fig. 10) reveal that both 
integration methods significantly improved the accuracy of DSR esti
mation. Compared with the best retrieval algorithm, the linear 
regression-based method reduced the RMSE by 9 W/m2, while the 
machine-learning approach reduced this value by 11 W/m2. The two 
data-driven integration approaches also reduced the DSR estimation 
bias: linear regression and machine learning produced biases of − 1.6 W/ 
m2 and 0.9 W/m2, respectively. 

For the demonstration in the spatial domain, the five DSR retrieval 
methods and the machine learning based integration approach were 
applied to one MODIS/Terra swath (Fig. 11). Ocean pixels were masked 
because the DSR retrieval algorithms evaluated here were developed for 
estimating land DSR. The five retrieval approaches generated DSR maps 
with similar spatial patterns, which were largely dominated by meso
scale clouds. It should be noted that the map from the parameterization 
approach contained a large number of filling values (15.8%) because of 
the invalid input data. The proposed integration approach requires all 
input parameters to be valid. As a result, filling pixels also occurred in 
the map of the integrated DSR. 

4.2.2. Impacts of the DSR input used in algorithm integration 
Using the DSR estimates from the five retrieval algorithms, the ma

chine learning-based integration approach reduced RMSE of estimating 
DSR to 82.0 W/m2, from 93.0 W/m2 of the best-performing individual 
retrieval approach (Fig. 10). Here, we evaluated how the selection of the 
input data affects the integration results. Combining the two best 
retrieval algorithms (LUT and parameterization) achieved similar re
sults to those obtained by integrating all five retrieval methods (Fig. 12). 
Combining other pairs of retrieval methods produced varied results 
(Fig. 13). Although the LUT and parameterization approaches produced 
DSR estimates with similar accuracy, the integration results using each 
approach were quite distinctive. The integration approach using 
parameterization generally produced much more accurate DSR esti
mates than that using the LUT approach. The worst case for including 
the parameterization approach had an RMSE of 85.4 W/m2, which was 
by 4.7 W/m2 lower than the best case without using the parameteriza
tion approach. 

The differences in accuracy achieved by combining two approaches 

are likely caused by factors other than the accuracy of the individual 
retrieval algorithms being combined. The DSR estimation errors of the 
five retrieval methods were positively correlated (Fig. 14). Generally, 
the DSR estimation errors of the four inverse approaches were more 
strongly correlated than those of the other approaches. Among the four 
inverse approaches, the results of the neural network approach were less 
correlated with the results of the other three approaches. It is not sur
prising that the optimization and LUT approaches generated highly 
correlated results. The correlation coefficient between their errors was 
as large as 0.92 because the two approaches share similar physical 
foundations and use the same offline radiative transfer simulation data. 
The correlation coefficient between the direct estimation approach and 
the optimization approach was also high (0.81). The results of the for
ward parameterization approach were less correlated with those of the 
other four inversion approaches than with those between any two 
inversion approaches. As a result, integrating forward parameterization 
and an inverse approach produced better results than integrating two 
inversion approaches. This even produced results comparable to those 
obtained by integrating all five approaches. 

5. Conclusions 

DSR is fundamental to the Earth's radiation balance and essential in 
many applications. It can be estimated from satellite data using several 
types of retrieval approaches. Many efforts have been devoted to algo
rithm development, product generation, and validation. Although 
studies comparing multiple products are not uncommon, product com
parison cannot replace the comparison of retrieval algorithms because 
data product quality depends not only on algorithm performance, but 
also on the quality of the implementation and the reliability of the input 
data sources. Unfortunately, few existing studies have focused on 
comparing retrieval approaches and understanding their strengths and 
limitations and scenarios in which they are most suitable. 

To fill the gap, this study developed a controlled framework to 
evaluate five representative DSR retrieval algorithms using the consis
tent data as input to provide comprehensive evaluation of these retrieval 
methods. Based on the algorithm assessment, we presented a novel 
algorithm-integration approach that combines the results of the five DSR 
retrieval algorithms to improve the accuracy and consistency of DSR 
estimates. 

Among the five approaches evaluated in this study, the forward 
parameterization approach outperformed the other four inversion ap
proaches. Because of its efficiency and accuracy, the parameterization 
approach has been applied to generate global long-term data products 
(Tang et al., 2021; Tang et al., 2019b). Nevertheless, parameterization 
has its limitations. It requires the most input parameters and generates 

Fig. 10. Results of algorithm integration using the neural network approach and the linear regression approach. For comparison, the downward shortwave radiation 
(DSR) estimated from the best performance retrieval approach (parameterization) validated with the same data set is also shown. 
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the fewest valid retrievals. In fact, the four inversion methods all showed 
a better performance when only common pixels were used for valida
tion. When an identical validation dataset was used, the RMSE of the 
LUT approach was only 4 W/m2 greater than that of the parameteriza
tion approach. 

The performance of the parameterization approach heavily depends 
on the quality of input atmospheric parameters, including aerosol and 
cloud optical variables. Through the continuous development and 
refinement of several decades, the MODIS atmospheric products are 
highly mature and have achieved high accuracy. The reliable input data 
are the pillar that the superior performance of parameterization is based 
on. When high quality atmospheric products are unavailable, the con
cepts of forward and inverse approaches can be used in a combined way. 
The key atmospheric parameters such as cloud optical and microphys
ical variables are first inversely retrieved from satellite observations and 
then used in the forward method to generate DSR estimates (Letu et al., 
2020). 

The performance of the five approaches varied with surface and at
mospheric conditions. All of the approaches estimated DSR with larger 
uncertainty for cloudy-sky or snow-covered cases. The parameterization 
approach was the most reliable for almost all scenarios. After the 
parameterization approach, the LUT approach had the most accurate 
DSR estimates for clear-sky cases, and direct estimation had the best 
performance for snow-covered conditions (Table 8). 

Our analysis reveals that algorithm integration efficiently reduces 
DSR estimation errors by taking advantage of multiple retrieval ap
proaches. Even the simple linear regression-based integration model 
substantially improved the accuracy of the DSR estimation. The inte
gration approach based on the neural network slightly outperformed the 
linear approach. By combining the results from all five retrieval ap
proaches, the neural network approach reduced the DSR estimation 
error to 82.0 W/m2 (14.9%) from 93.0 W/m2 (16.9%) for the best- 
performing retrieval approach. Integration of two algorithms (a for
ward and an inversion approach) reduced the RMSE by 8–10 W/m2. The 

Fig. 11. DSR maps generated from the five retrieval algorithms and the algorithm integration method using the MODIS/Terra swath obtained on June 6, 
2013, 17:05UTC. 

Fig. 12. Algorithm integration results of combing the look-up table (LUT) and 
parameterization approaches. 

Fig. 13. Root mean square errors (RMSE) of algorithm integration using two 
downward shortwave radiation (DSR) retrieval algorithms. 
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inclusion of data from additional inversion approaches only marginally 
improved the integration results because the DSR estimation errors from 
the four inversion approaches were highly correlated. 

This study identifies limitations and weaknesses of the five repre
sentative DSR retrieval approaches. Continuous algorithm development 
is needed to further improve the performance of individual retrieval 
algorithms. Future efforts should also be devoted to algorithm- 
integration studies that leverage the advantages of multiple retrieval 
algorithms. Algorithm integration is a promising way to obtain DSR 
estimates that are superior to estimates from any individual retrieval 
algorithm. This study demonstrates a framework for algorithm inte
gration using instantaneous DSR values. The incorporation of multi- 
source satellite data, especially geostationary data, is of vital impor
tance for monitoring the diurnal DSR variability. Future studies may 
focus on more complex data integration methods that can handle het
erogeneous data sources, mismatched temporal spatial resolution and 
coverage, and missing and inconsistent data. 

It should be noted that the evaluation results presented in the study 
are based on specific implementation of the retrieval algorithms. The 
performance of each type of DSR retrieval approaches can also be 
associated with other factors, such as selection of the specific algorithm, 
choice of radiative transfer models, configuration of model parameters, 
representativeness of training datasets, as well as quality of key input 
parameters. 
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Table 8 
Strengths and limitations of the five downward shortwave radiation (DSR) 
retrieval algorithms evaluated.  

Method Strength Limitation 

Parameterization Highly accurate Rigorous requirements for input 
data, in terms of the amount of 
variables and the accuracy of surface 
and atmospheric parameters 

LUT Accurate; Atmospheric 
parameters not 
required 

Limited spectral information used; 
Not reliable for snow-covered 
surfaces 

Optimization Atmospheric and 
surface parameters not 
required 

Computationally slow; 
Accuracy dependent on selection of 
cost function 

Direct estimation Accurate over snow- 
covered surfaces; 
Atmospheric 
parameters not 
required 

Overall moderate accuracy 

Neural network Atmospheric and 
surface parameters not 
required 

Accuracy dependent on quality and 
quantity of training data  
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