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Abstract

Probabilistic time-series forecasting plays a vital role in decision-
making under uncertainty, especially in applications like solar en-
ergy, where forecast reliability directly impacts energy planning
and grid stability. While recent models have improved in gener-
ating predictive distributions rather than single-point estimates,
existing evaluations often focus on average performance and over-
look how model quality varies across different real-world scenarios.
In solar energy monitoring, for example, the difficulty of forecast-
ing can change significantly due to atmospheric variability, sensor
types, and climate conditions. This work addresses the need for
scenario-aware evaluation of probabilistic models by benchmarking
state-of-the-art forecasting methods using SolarCube-a large-scale
solar radiation dataset spanning diverse regions, cloud regimes, and
environmental conditions. We define structured “easy” and “hard”
cases across four scenarios and examine how different probabilistic
model families (e.g., diffusion, VAE, flow-based) capture uncertainty
under these conditions. Our goal is to move beyond overall metrics
and reveal how model reliability changes across scenarios that are
critical for downstream applications.
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1 Introduction

While recent advances in deep generative models—such as diffusion-
based, variational autoencoder (VAE)-based, and flow-based ap-
proaches—have significantly improved probabilistic forecasting ca-
pabilities, current evaluation practices remain limited. Most studies
report overall metrics (e.g., RMSE, CRPS, log-likelihood) averaged
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across test samples, without considering how model performance
varies across different conditions. Understanding scenario-based
uncertainty is critical for real-world applications, as the value of un-
certainty estimates is most evident in challenging situations where
errors are likely to be high. In other words, whether an estimated
confidence internal (e.g., 95%) can cover the ground truth is often
much more important when the prediction errors tend to be larger,
and less so if the prediction is already very close to the truth. Yet,
few studies evaluate how predictive distributions behave under
such diverse conditions.

In this study, we use large-scale solar energy estimation as an ex-
ample, where (1) probabilistic forecasting is important from the ap-
plication perspective and (2) the uncertainty is highly dependent on
the scenarios. Application-wise, accurate probabilistic forecasts sup-
port a range of operational and planning decisions, from real-time
grid balancing to day-ahead energy market bidding. For short-term
forecasting, a recent multistage stochastic bidding study showed
that the use of probabilistic forecasts for intraday markets increased
revenue by 22% and halved the imbalance [9]. In day-ahead forecast-
ing, improvements in probabilistic accuracy have been estimated
to yield economic benefits of $5-10/MWh by reducing imbalance
costs and improving efficiency [10].

Moreover, solar forecasting spans diverse conditions with vary-
ing difficulty. Solar irradiance is relatively easy to predict under
clear-sky scenarios, but becomes significantly more difficult un-
der dynamic atmospheric variability, such as fast-moving clouds.
Horizons create additional scenarios. Short-term (nowcasting) de-
pends on recent dynamics, whereas day-ahead benefits from regu-
lar diurnal patterns yet can expose autoregressive models to error
accumulation and reduced long-range skill. As a result, overall
performance metrics—averaged across all cases—can mask poor
model performance in exactly the situations where uncertainty
quantification is most needed. As accurate and well-calibrated un-
certainty estimates during such challenging conditions are far more
valuable than performance under ideal circumstances, evaluating
models across distinct scenarios is essential for understanding and
improving their reliability in operational decision-making.

We propose a scenario-based evaluation framework, and we
demonstrate the importance of using the large-scale benchmark
dataset SolarCube for solar energy forecasting tasks. This dataset
spans multiple continents and incorporates data from various sources,
including satellite observations and in-situ radiation measurements.
Our contributions are summarized as follows:

e We present a scenario-based evaluation framework to assess prob-
abilistic forecasting models using the SolarCube benchmarking
dataset for various solar energy forecasting tasks and scenarios.

e We define structured “easy” and “hard” forecasting scenarios
based on atmospheric variability, regional or domain shifts, and
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climate zone consistency, spanning both short-term and long-
term forecasting tasks.

e We benchmark various families of probabilistic models under
these scenarios and analyze how their uncertainty estimates
respond to varying conditions.

e We show that traditional performance metrics can obscure sub-
stantial variability in model behavior, highlighting the need for
scenario-aware model development and validation in fair and
risk-sensitive applications.

2 Related Work

Probabilistic Time Series Forecasting. Deep learning has advanced
probabilistic forecasting by addressing limitations of classical mod-
els. Loss-based methods estimate parametric distributions through
maximum likelihood training but are constrained by fixed distri-
butional assumptions. To improve flexibility, VAE-based models
introduce latent variables to capture complex uncertainty [5]. Nor-
malizing flow-based approaches further enhance expressiveness
by learning invertible transformations conditioned on historical
context [7]. Diffusion-based models offer an alternative generative
framework, modeling uncertainty through iterative denoising pro-
cesses [8, 6]. These categories progressively address the trade-offs
between distributional flexibility, temporal dependency modeling,
and sampling efficiency in multivariate time series forecasting.

SolarCube Dataset. SolarCube [3] is a benchmark dataset for so-
lar forecasting, designed to support both short-term and long-term
prediction tasks. It provides temporally aligned ground-measured
solar radiation, cloud masks, and three bands of geostationary satel-
lite observations at a 15-minute resolution. The dataset spans 19
study regions globally and includes evaluation metrics tailored
specifically for solar forecasting. We further update SolarCube by
incorporating hourly meteorological variables from ERA5, includ-
ing cloud cover, temperature, and wind components (u and v). These
additions improve the dataset’s utility for extended-horizon fore-
casting and enable climate-aware evaluation scenarios.

3 Scenario-Based Evaluation

To comprehensively evaluate the robustness and reliability of prob-
abilistic solar forecasting models, we design scenario-based eval-
uations in both day-ahead and 3-hour-ahead forecasting settings.
All scenarios are categorized into Easy and Hard cases to reflect
different levels of prediction difficulty.

3.1 Day-Ahead Forecasting

For day-ahead forecasting, we followed the setting of point-based
long-term task in [3] with the incorporation of four additional mete-
orological variables from reanalysis data. We evaluate performance
under three different scenarios:

Inter-Day Variability Scenarios. These scenarios follow the variability-

based scenario design proposed in [2]. The Easy scenario corre-
sponds to days with minimal changes in average solar radiation
compared to the previous day, whereas the Hard scenario involves
substantial changes in solar radiation from one day to the next.
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Climate Zone Transferability Scenarios. SolarCube covers sites
across diverse global climate zones. We design the evaluation sce-
narios using Koppen climate zones [1], with a focus on how consis-
tent or mismatched the training and testing climates are. We test
the model on two sites located in the Cfa zone. The Easy scenario
uses training data from the same Cfa zone, while the Hard scenario
uses training data from Dfa and Dfb zones, representing a climate
mismatch.

Cross-Region Generalization Scenarios. SolarCube spans multi-
ple continents, in-situ networks, and satellite sensors, introducing
variability that impacts model generalization. To test cross-regional
transfer, we test on two U.S. sites. The Easy scenario trains on
other U.S. sites with matching sensors and ground measurement
networks, while the Hard scenario trains on East Asia data, intro-
ducing both regional and sensor-domain shifts.

3.2 3-Hour-Ahead Forecasting

For 3-hour-ahead forecasting, we followed the experimental setup
of the point-based short-term task in [3], but aggregated 15-minute
data into hourly intervals. We evaluate its performance under the
following scenarios:

Cloud-Based Scenarios. In short-term solar forecasting, cloud
variability is key. We define scenarios based on cloud mask changes:
Easy—no change in cloud mask, indicating stable atmospheric con-
ditions; Hard—cloud mask changes, indicating dynamic conditions.

3.3 Models

Informer_MLE (I_MLE):. A variant of the Informer architecture
[11] trained using maximum likelihood estimation (MLE) to produce
probabilistic forecasts via distributional outputs instead of point
predictions.

TLAE:. A probabilistic forecasting model that learns a latent
representation of multivariate time series and generates future
trajectories via a variational autoencoder framework [5].

CSDI.. A non-autoregressive denoising diffusion model adapted
for probabilistic forecasting, generating future samples by reversing
a noise process conditioned on observed historical context [8].

TimeGrad: An autoregressive denoising diffusion model for prob-
abilistic time series forecasting, where a recurrent neural network
(RNN) encodes the historical context into a hidden state. The diffu-
sion model then conditions on this state to sequentially generate
future time steps [6].

TempFlow: An autoregressive probabilistic model that combines
an RNN with conditional normalizing flows. At each future time
step, an RNN encodes the context and previously generated outputs
to condition a flow-based transformation that generates the next
prediction [7].

3.4 Evaluation Metrics

Following [3], we adopt the coefficient of determination (R?) and
relative root mean squared error (rRMSE) to evaluate deterministic
forecasts, accounting for the strong diurnal and seasonal variability
in solar radiation. To assess the quality of probabilistic forecasts,
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we use the Continuous Ranked Probability Score (CRPS) [4], which
measures the difference between the predicted cumulative distribu-
tion function (CDF) and the empirical CDF of the observation. Since
I_MLE exhibits significantly high uncertainty in the evening—when
the true value is certainly zero—we exclude evening hours when
calculating CRPS for all models.

4 Experiment Results
4.1 Day-ahead Forecasting Results

Table 1 shows the model performance in the inter-day variability
scenarios. Models generally perform well under easy conditions,
capturing the temporal dynamics with high confidence and narrow
uncertainty bands as shown in Figure 1. Under hard conditions,
performance drops across most models due to increased irradiance
variability. All models showed significant drops in CRPS as well.
Comparatively, diffusion-based models, particularly TimeGrad and
CSDI, demonstrate relatively more stable performance and better-
calibrated uncertainty intervals. Flow-based and VAE-based meth-
ods show wider prediction intervals and greater variance. Addition-
ally, while all methods can represent uncertainty, diffusion-based
models show more desired uncertainty changes moving from easy
to hard scenarios (i.e., enlarged intervals), and the other methods
tend to have a similar-sized buffer around mean predictions.

For the climate zone transferability scenarios, there is no signifi-
cant change in overall performance between easy and hard cases
for most models, as shown in Table 2 and Figure 2. TLAE is the
only model that exhibits notable performance degradation under
climate shifts, potentially due to its sensitivity to domain-specific
latent representations. The cross-region generalization scenarios
show greater variation in model performance in Table 3. While
TempFlow and TimeGrad maintain consistent rRMSE between easy
and hard cases, their CRPS increases, indicating degraded uncer-
tainty calibration. CSDI and I_MLE maintain consistency in both
rRMSE and CRPS. TLAE shows larger performance degradation
under hard conditions.

Overall, for day-ahead forecasting, CSDI is the most stable model,
maintaining higher accuracy and better-calibrated uncertainty esti-
mates across easy and hard cases under different scenarios. I_MLE
often produces much wider prediction intervals compared to other
models, showing the instability of uncertainty representation with
only the MLE loss. TLAE shows more forecasting quality degrada-
tion from easy to hard, but its uncertainty interval remains similarly
small and does not well reflect the deviation from true values.

Table 1: Performance metrics for inter-day variability

Model Easy Hard

R?  RMSE CRPS | R? IRMSE CRPS
CSDI 0.78  30.3 57.8 | 043 584 100.6
TLAE 051 455 1138 | 0.03 773 155.5
I MLE 0.74 333 1004 | 0.28  65.8 152.1
TimeGrad | 0.70 354 745 | 046  57.1 97.8
TempFlow | 0.75 32,5 638 | 037  61.2 106.6

4.2 3-Hour-Ahead Forecasting Results

In the 3-hour-ahead forecasting scenarios with cloud-based vari-
ability, CSDI consistently outperforms all other models, achieving
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Figure 1: Validation results for easy and hard cases under the
inter-day variability scenarios.

Table 2: Performance metrics for climate zone transferability

Model Easy Hard

R?> RMSE CRPS| R? TrRMSE CRPS
CSDI 0.63 446 83.3 | 0.63 448 85.2
TLAE 0.35 59.4 139.7 | 0.11 69.4 174.0
1 MLE 059  46.8 123.1 | 058  47.6 123.3
TimeGrad | 0.63  44.5 843 | 0.64  44.0 84.0
TempFlow | 0.60  46.3 903 | 0.62 453 87.2
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Figure 2: Validation results for easy and hard cases under the
climate zone transferability scenarios.

Table 3: Performance metrics for cross-region generalization

Model Easy Hard

R?  tRMSE CRPS | R?® rRMSE CRPS
CSDI 0.70 37.2 65.2 0.70 37.4 67.3
TLAE 0.32 56.3 137.8 | 0.19 61.6 157.7
I_MLE 0.64 40.9 110.0 | 0.64 41.2 113.3
TempFlow | 0.69 38.1 68.4 0.64 40.7 77.8
TimeGrad | 0.70 37.7 68.5 0.67 38.9 74.2

the lowest rRMSE and CRPS in both easy and hard cases, as shown
in Table 4. Unlike previous scenarios, TLAE exhibits competitive
accuracy but suffers from significantly higher CRPS, indicating
unreliable uncertainty estimates. Figure 4 presents an example,
where red shading highlights time steps categorized as hard due to
changes in the cloud conditions relative to the last input step. In this
instance, a sharp drop in solar radiation caused by cloud presence
deviates from the previous increasing trend. Among the models,
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Figure 3: Validation results for easy and hard cases under the
cross-region generalization scenarios.

TempFlow and CSDI were able to capture the transition in this
example, and TempFlow shows tighter coverage with the intervals
(CSDI shows better numbers averaging over all examples). TLAE
does not reflect the drop and yields narrow prediction intervals that
do not cover the ground truth. In contrast, I MLE and TimeGrad
do not capture the trend either but produce wider intervals that
contain the true values.

Table 4: Performance metrics for 3-hour forecast

Model Easy Hard

R?> IRMSE CRPS | R?> IRMSE CRPS
CSDI 082  26.2 504 | 0.73  20.2 55.3
TLAE 079 277 109.4 | 0.66  22.8 1135
I MLE 062  37.6 83.2 | 043 295 89.2
TempFlow | 0.71 32.7 725 | 070 215 61.4
TimeGrad | 0.74  30.9 775 | 0.64 235 85.8
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Figure 4: Validation results for easy and hard cases under the
cloud-based scenarios.

5 Conclusion

This study presented a scenario-based evaluation framework for
probabilistic solar forecasting, emphasizing the need to move be-
yond average metrics to assess model reliability under diverse and
realistic conditions. Our results showed that while many models per-
form well under stable atmospheric settings and generalize across
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regions and sensor modalities, they often struggle to provide accu-
rate uncertainty estimates under highly dynamic atmospheric vari-
ability—in both short- and long-term forecasts. Among the models,
CSDI provides comparatively more robust performances across the
scenarios, while models like TempGrad and TempFlow offer varied
strengths over different scenarios. Overall, current probablistic fore-
casters still require improvements to represent uncertainty when
it matters most over the challenging cases and be more reflective
of the potential prediction errors. We recommend scenario-based
evaluations to better understand and address these gaps, helping de-
velop more robust and context-aware forecasting systems. In future
work, we will extend the analysis to additional benchmark datasets
for broader coverage and leverage the evaluation to develop new
models to enhance uncertainty representation.

Acknowledgments

Ruohan Li, Yiqun Xie, Zhihao Wang, and Zhili Li are supported in
part by the US NSF under Grant No. 2126474, 2147195, 2425844, and
2530610; NASA under grant 80NSSC25K0013 and 80NSSC25K7221;
Google’s Al for Social Good Impact Scholars program; NSF NCAR’s
Derecho HPC system; and the Zaratan cluster at the University of
Maryland; Xiaowei Jia is supported in part by the US NSF under
Grant No. 2239175, 2147195, 2425845, 2530609; NASA under Grant
No. 80NSSC21K0314, and 8ONSSC24K1061; and Pitt Momentum
Funds and CRC at the University of Pittsburgh.

References

[1] Hylke E Beck et al. 2023. High-resolution (1 km) kdppen-geiger maps for
1901-2099 based on constrained cmip6 projections. Scientific data, 10, 1, 724.

[2]  Oussama Boussif, Ghait Boukachab, Dan Assouline, Stefano Massaroli, Tianle
Yuan, Loubna Benabbou, and Yoshua Bengio. 2024. Improving* day-ahead™
solar irradiance time series forecasting by leveraging spatio-temporal context.
Advances in Neural Information Processing Systems, 36.

[3] Ruohan Li, Yiqun Xie, Xiaowei Jia, Dongdong Wang, Yanhua Li, Yingxue
Zhang, Zhihao Wang, and Zhili Li. 2024. Solarcube: an integrative benchmark
dataset harnessing satellite and in-situ observations for large-scale solar energy
forecasting. Advances in Neural Information Processing Systems, 37, 3499-3513.

[4] James E Matheson and Robert L Winkler. 1976. Scoring rules for continuous
probability distributions. Management science, 22, 10, 1087-1096.

[5] Nam Nguyen and Brian Quanz. 2021. Temporal latent auto-encoder: a method
for probabilistic multivariate time series forecasting. In Proceedings of the AAAI
conference on artificial intelligence number 10. Vol. 35, 9117-9125.

[6] Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. 2021. Au-
toregressive Denoising Diffusion Models for Multivariate Probabilistic Time
Series Forecasting. In Proceedings of the 38th International Conference on Ma-
chine Learning (Proceedings of Machine Learning Research). Marina Meila and
Tong Zhang, (Eds.) Vol. 139. PMLR, (18-24 Jul 2021), 8857-8868. http://proceed
ings.mlr.press/v139/rasul21a.html.

[7]  Kashif Rasul, Abdul-Saboor Sheikh, Ingmar Schuster, Urs Bergmann, and
Roland Vollgraf. 2021. Multivariate Probabilistic Time Series Forecasting via
Conditioned Normalizing Flows. In International Conference on Learning Repre-
sentations 2021. https://openreview.net/forum?id=WiGQBFuVRv.

[8]  Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. 2021. Csdi: con-
ditional score-based diffusion models for probabilistic time series imputation.
Advances in neural information processing systems, 34, 24804-24816.

[9] LR Visser, TA AlSkaif, Adil Khurram, Jan Kleissl, and WGHJM van Sark. 2024.
Probabilistic solar power forecasting: an economic and technical evaluation of
an optimal market bidding strategy. Applied Energy, 370, 123573.

[10]  Jie Zhang, Bri-Mathias Hodge, Anthony Florita, Siyuan Lu, Hendrik F Hamann,
and Venkat Banunarayanan. 2013. Metrics for evaluating the accuracy of solar
power forecasting. Tech. rep. National Renewable Energy Lab.(NREL), Golden,
CO (United States).

[11]  Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: beyond efficient transformer for long
sequence time-series forecasting. In Proceedings of the AAAI conference on
artificial intelligence number 12. Vol. 35, 11106-11115.


http://proceedings.mlr.press/v139/rasul21a.html
http://proceedings.mlr.press/v139/rasul21a.html
https://openreview.net/forum?id=WiGQBFuVRv

	Abstract
	1 Introduction
	2 Related Work
	3 Scenario-Based Evaluation
	3.1 Day-Ahead Forecasting
	3.2 3-Hour-Ahead Forecasting
	3.3 Models
	3.4 Evaluation Metrics

	4 Experiment Results
	4.1 Day-ahead Forecasting Results
	4.2 3-Hour-Ahead Forecasting Results

	5 Conclusion
	Acknowledgments

